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Abstract

A large curvature circular beam subject to uniform bending in its plane is investigated by a displacement method. This
is the companion of a previous paper in which the same subject has been investigated by a stress method approach (Part
I, Int. J. Solids Struct. 38 (2001) 5703-5726).

The functional form of the three-dimensional displacement field is determined exactly: the cross-section remains
plane and rotates about the Z-axis, while each longitudinal fiber remains circular. This result is independent of the
constitutive equation of the material, provided it is compatible with the uniform bending hypothesis.

The equilibrium equation (in several form) and the boundary conditions are derived for the linear elastic and ho-
mogeneous beam: they constitute an unstable degenerate boundary value problem with a structure similar to that found
in Part I. The non-variational nature of this kind of problem is also detected.

Finally, the relationship with the potential stress function y is derived, governed by a hyperbolic second order partial
differential equation (another unusual occurrence appearing in bending problem). © 2001 Elsevier Science Ltd. All
rights reserved.

Keywords: Curved beam; Uniform bending; Multi-connected cross-section; Compatibility equations; Potential stress function;
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1. Introduction

A cylindrical curved beam, with large radius of curvature with respect to its width, loaded by bending
moments at its ends is studied as a three dimensional (3D) linear problem using the displacement method.

This is the companion of a previous paper in which the same subject was investigated by a stress method
approach (Mentrasti, 2001; quoted as Part I in the sequel) to which reference can be made for an intro-
duction of the problem and for a precise definition of uniform thermo-mechanical state.

The principal assumption is the uniform bending hypothesis: the mechanical problem is assumed to be
invariant under the group %, of rigid rotations about the Z global axis; from an analytical point of view, the
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Nomenclature

of cross-section domain, N-connected, with boundary 0.o/

Int(#) simply connected domain enclosed within the curve ¥

¢; C 0.9/ ith regular curves of the boundary, i=1...N

boo bending constant, Eq. (2.41)

E, G, v elastic constants

F auxiliary displacement potential function, Egs. (4.28)—(4.35)

o, & stress and strain components in a cylindrical system of coordinate

n:=n, nz]T components of the outward normal, n, at 0./

t :=[—n. n,)" components of the tangent unit vector, #, at d.o/

u(p,¢,z):==[u v w]" components of the displacement field u, in cylindrical coordinates

o, geometric constant, Eq. (4.22)

K; integration constant (relevant to the ith boundary)
V] potential stress function

@ longitude of the current cross-section

e generalized potential displacement function

A = p0,(1/p)d, + 0., field operator, Eq. (4.7)

A" :=(1/p)0,p0, + 0.. field operator, Eq. (3.13)

Q:=0,(1/p)0,p + 0.. field operator, Eq. (3.11)

{0, p,z} system of coordinates in the plane of the cross-section

{0, p, ¢,z} cylindrical system of coordinates

{0,X,Y,Z} global system of coordinates (Z is the axis of revolution)
()  partial derivative with respect to the variable ¢

O end of a proof

components of the strain tensor in cylindrical coordinates are independent of the ¢ variable that locates the
cross-section ./ along the beam (cf. Part I, Fig. 1).

Moreover, y,, and 7,. are assumed to be nil (bending/shear—torsion uncoupling).

The question here is not to duplicate previously established results; on the contrary, the investigation
aims at ascertaining whether the oblique degenerate unstable boundary value problem (BVP) attained in that
formulation can be bypassed using an alternative method or if it is a proper characteristic of the curved
beam under bending. It must be clearly stated that, for this kind of problems, it is not a matter of regularity
of the solution consequent to assuming regularity of data and boundary geometry. Rather, in these cases
the BVP is no longer Fredholm type and (infinite dimensional) additional solutions or conditions may appear
(cf. Popivanov and Pagachev, 1997).

In a first step, a functional form of the displacement field for the 3D problem is determined exactly,
without specification of the material (e.g. elastic, plastic, viscous, non-homogeneous, etc.): the main result is
that the cross-section, while deforming transversely, remains plane and rotates about the Z-axis, propor-
tionally to ¢.

The only necessary conditions on the constitutive equation are its consistency with the basic uniform
bending hypothesis and the bending/shear—torsion uncoupling (an explicit discussion of such restrictions is
not given in this paper).

The governing equilibrium equation and the boundary conditions (BCs) are then derived, leading to an
unstable degenerate BVP governed by the same differential operator appearing in the stress approach (Part
1, Section 5).
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Mitchell derived one of the field equations on the basis of an a priori assumption on the displacement field.
The degenerate character of BC is however presented here for the first time, along with a possible solution.

In conclusion, the displacements are explicitly determined in terms of an auxiliary function F, governed
by a simple hyperbolic partial differential equation (PDE), related to the potential stress function  defined in
Part 1.

2. Reduction of the displacement field functions

The displacement components [ v W]T =:u(p, ¢,z), along the axes of the cylindrical system of co-
ordinates (p, 1 and z, respectively), are assumed as the unknowns of the problem.

The idea is to use the strain definition and the compatibility equations to determine the dependence of u on
a minimal number of functions (denoted, in the sequel, with lower case Latin letter «, b, etc., in order of
appearance; their dependence on the p, 1, z variables is always explicitly shown in this paragraph).

2.1. Consequences of the compatibility equations

Strictly speaking, the compatibility equations (Part I, Appendix A, Egs. (A.1)-(A.6)) would be identi-
cally fulfilled by every regular enough displacement field u(p, ¢, z). Nevertheless, they can be used to specify
the functional dependence of the components on the variables:

On one hand, the compatibility equations in cylindrical coordinates cannot contain any derivative with
respect to ¢: Egs. (3.1)—(3.6) in Part I, named there as I-V1, are precisely the result achieved in such a way.

On the other hand, a generic function assumed for # does not necessarily satisfy these relationships; in
fact, expanding I-VT as explicit functions of u, v, w, the following conditions result:

I — Uypzz = 0, (2.1)
=0, (2.2)
I — v,pp = 0, (2.3)
,f 1
1w — Uspzz —P PWW)Z o = 0» (24)
(1
V— _(,0 U,z )ap +p ;va,(p p = 0, (25)
VI = 0,p:= 0. (2.6)

2.2. Consequences of €, =0

Since ¢, := u,,, from ¢, , = 0 follows that u,,, = 0; this PDE can be quickly integrated as
”(Pa 9072) = u(pz) (p,Z) + u((pz><(pvz)7 (27)

in which, henceforth, v,y denotes the part of v depending on the variables A and u only.
Similarly, e., = 0 gives

W(pv QD,Z) = W(pr/))(p, (P) + W(pz)(pvz)a (28)

in which ¢. :==w,,.
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Since ¢, := (v,, +u)/p, using Eq. (2.7) the condition ¢,, = 0 gives
Usgp Fth(gz) 59 = 0, (2.9)

from which, deriving with respect to p, results in
,ppp = 0. (2.10)

2.3. The v component

The conditions (2.1), (2.3), (2.6), (2.10) on v permit determining its functional dependence with respect to
the variables; Appendix A gives a detailed proof of the attained result:

U= booPQO + b2(p) + b3(§0) +Za0,</)(q)) + az(Z) + U(pz)(paz)' (211)

The shear strain y,, and 7., are assumed to be nil by the bending/shear—torsion uncoupling (cf. Part I,
Section 2). In particular

28y, =1y, /p+ p(v/p),, =0 (2.12)
must hold; using the results (2.7) and (2.11), this equation writes

0’ [%bz(p) + %UW)} oo Tz o —D3(@) — zag (@) — ax(z) = 0, (2.13)
that, after a derivative with respect to p, becomes

{pz[%(bz(p) +v<pz>)} » },pz 0. (2.14)

This relationship is reckoned as a homogeneous ordinary differential equation (ODE), whose general
integral is

ba(p) + vy = —d(2) + pe(2), (2.15)
from which v,., = —d(z) — ba(p) + pe(z). Therefore, the relationship (2.11) can be finally completed as
v(p, ¢,2) = boopp + b3 (@) + za0 o (¢) + a3(z) + pe(z), (2.16)

where d(z) 4 a(z) is collected in a3(z).
2.4. The w component
Consider now that 2¢,, := v,. +w,, /p = 0; this equation, using Eqgs. (2.16) and (2.8), writes
a0, (@) + a3.(z) + pe,. (z) + %W(M,),(p =0. (2.17)

By a derivative with respect to p

1
e,, (Z) + (;W<ﬂ¢>> 0o = 0 (2.18)

is first obtained; a subsequent derivative with respect to z gives e,., (z) = 0, from which e(z) = epz + e;.
Substituting for e(z) in Eq. (2.18) and integrating the resulting PDE, (w(,4)/p),p0 +€0 = 0,

Wipg) = —eop’@ + ho(p) + phi(9) (2.19)
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is attained.
However, the original not derived Eq. (2.17) must be fulfilled by e(z) and w,; the relevant condition is
agyp (¢) + a3,: (2) + phi,, (@) = 0, from which it is easy to see that

as (Z) = azz+ asy, (220)

hi(p) = —ao(p) — az1p — ax. (2.21)
The required functional form for wy,, is then achieved
Wing) (P5 @) = —eop’ @ + ha(p) — azipp — pao(¢), (2.22)
after gathering /y(p) and p asz; in hy(p).

2.5. The u component
The last consideration about the strain component is that 2¢,, := w,, 4u,. is independent of ¢. Employing
the expression for the u and w displacement obtained in the previous steps, the condition ¢,.,, = 0 gives
—2epp — az — ao.p(@) + Uiz - = 0. (2.23)
Then ey = 0 must hold; besides, u,.) can be quickly determined by two quadratures as

Uiz = a3 @z + zag(@) + as(@) + as(z). (2.24)

2.5.1. Equations to be restored
Now, Eq. (2.12), ¢,, = 0, must be reconsidered: it is not yet fulfilled since only its derivative is used
hitherto (cf. Eq. (2.14)). Using the foregoing expressions for u and w, Eq. (2.12) writes

a3z + as (@) — bi(@) — as(z) = 0, (2.25)
from which it is easy to draw, in the usual manner, that

Ll3(Z) = a3 z+ Cp, (226)

as(@) =crop + / biy(p)de + c,. (2.27)

For the same reason, also the equation ¢, , = 0 should be reconsidered (cf. Eq. (2.10)); however, this is
postponed after the simplifications attained in the next section.
At the end of this section, it is perhaps useful to summarize the achieved results:

Uigzy = a3 @z + zao(@) + as(z) +c1op +cx + / bi(¢)do, (2.28)
v(p, @,2) = boopp + b3 + zag,, (@) + 1 + azz + eip, (2.29)
Wipzy = ha(p) — az1pp — pag(@). (2.30)

2.6. Consequences of the compatibility equations

The compatibility condition /I = 0 is identically satisfied by the displacement field (2.28)—(2.30). The
condition ¥ = 0 gives ay,, (¢) = 0, that is

a()((ﬁ) = an- (231)



5732 L. Mentrasti | International Journal of Solids and Structures 38 (2001) 5727-5745

Now it is convenient to restore the aforementioned Eq. (2.9); it gives the condition bs,,, (@) +
b3(¢) + as1z+ ¢; = 0 from which

as; = 0, (232)

b3(¢) + c1 = vgcos(¢) — ugsin (¢) (2.33)

are deduced, uy and v, being integration constants.
Equalities (2.31) and (2.32) permit a dramatic simplification of relationship (2.30) as w = hy(p) —
PaooW ) (p,2); even better, embedding the first two addends in the last one, the final form

w(p, ¢,2) = W) (p, 2) (2.34)

is obtained, showing that w is independent of ¢.
The updated displacement components are then:

u(p, ©,2) = ey (p,2) + {uocos (@) + vosin (@) } + [aooz + as(z) + ca, (2.35)
v(p, ¢,2) = boopp + {e1p — upsin (@) + vocos ()}, (2.36)
W(pa (/),Z) = w<,,z>(p,z). (237)

Note that, on one hand the terms enclosed in the square brackets in Eq. (2.35) can be embedded in
Uy (p,z); on the other hand, the terms enclosed in the brace brackets,

U = uycos () + vosin (@), (2.38)
vR := e;p — upsin (@) + vocos (@), (2.39)

are the components, in cylindrical coordinates, of a rigid body motion: a translation u, along the global
X-axis, vy along the global Y-axis and a rotation e; about the Z-axis.
Therefore, the most general functional form of # in a curved beam under uniform bending is

u= u(ﬂz)(pvz)v (2.40)
v = boop, (2.41)
W =W (p,2), (2.42)

modulo an unessential rigid body motion (cf. Mitchell, 1899).
2.7. Curved beam kinematics

The components of the local rigid rotation tensor, i.e. the skew-symmetric part of the displacement
gradient, in cylindrical coordinates are (Reismann and Pawlik, 1980):

1/1
W, =5 <;w,w — v,z) =0, (2.43)

Wy = 3t =W,y ) = 3oz — Wip) ), (2.44)

1/1
;=5 (p(pv),p - u,(p> = boo . (2.45)
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These relationships, together with the # expressions, permit to deduce several interesting qualitative
considerations about the kinematical behavior of the curved beam subjected to bending moments:

1. The cross-section remains plane. Both the identity w, = 0 and Eq. (2.41) state that the cross-section
does not warp.

2. The cross-section undergoes local rigid rotations in its plane. The rigid rotation w, of a neighboring of
every point of the cross-section is different from zero and it is a function of the point.

3. The cross-section rotates about the Z-axis. In fact it rotates by the angle by ¢ about z = Z, proportion-
ally to the angular abscissa ¢.

4. Each longitudinal fiber remains circular, with its center on Z. Since the displacement in the plane of
the cross-section is independent of ¢ and the cross-section rotates rigidly about Z, then a longitu-
dinal (circumferential) fiber remains circular and its center of curvature is always located on the Z-
axis.

S. Independence on the constitutive law, homogeneity and isotropy. The results obtained on the kinematics
of a curved beam under uniform bending are independent of the constitutive law (elastic, plastic, etc.); in
particular the beam has to be neither homogeneous nor isotropic! The decisive hypothesis is that of uni-
form bending, i.e. the invariance of the geometric-mechanical characteristics with respect to ¢; second-
ary, the constitutive equation must be compatible with the bending/shear—torsion uncoupling
assumptions, y,, = 7,, = 0.

From a practical point of view, these remarks suggest how standard finite element codes can be exploited
to simulate uniform bending in complex cross-section beams; that is, by considering a small wedge of the

beam subject to a circumferential rigid rotation about Z of one face with respect to the other (leaving the in-
plane cross-section displacements free).

3. Governing equilibrium equations
In this paragraph the field and boundary equilibrium equations will be derived in terms of the dis-

placement components obtained above (for the sake of simplicity, functions u/,., and wy,., will be referred to
in what follows by u and w, respectively, without ambiguity).

3.1. Stress components

The stress components, assuming that the beam is linearly elastic homogeneous and isotropic, are

o=y |0~ e (S| G)
(e e (L] (VRS RRUMERUSI (32)
e [(1 —v)w,z+v(u,p+%u+boo)}, (33)
Py P (3.4)

2(1+v)
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3.2. Field equation in u and v

The second field equilibrium equation (along ¢) is trivially fulfilled; the remaining ones,

—(pO’ )a FTpzyz — — 0y :Ov
o P O0)w Tl P

1
; (P sz)ap +0.,.= 07

after a bit of algebra, become

1 1
EQ,:2(1—v) [;(pu),p} w1 =2V)u,.. 4w, = 2(1 — 2v)b00;,

1 1
EQ;: (1 —=2v) ; (oW, )sp +2(1 = V)W, +; (pu),p: = 0.

3.3. Field equation in u

Let £Q;[u, w] and EQ;[u, w| denote symbolically Egs. (3.5) and (3.6), respectively. Owing to the structure
of the differential operator appearing in these relationships, it is not difficult to realize that the transfor-

mation

(EQs) e —(1 — 20) [% (PEQ)),) ] 21— ¥)(EQ))...

eliminates the w function. The resulting PDE is more readable when the operator

s2ﬁ4%%@p+aﬂ

is introduced; so, the required equation is
QOu = 0.

3.4. Field equation in w

Similarly, the transformation

1 1

;(pEQI)mZ _2(1 - V) ; [p(EQ3)7/J ]7/) _(1 - 2V)(EQ3)’ZZ
eliminates the u function, yielding

A" A w=0.

The operator

1
A" ==0,p0, + 0.,
p PPt

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

is dual (in the sense defined in Section 6) of the operator A := pd,(1/p)0, + 0..; it governs the bending
problem in the stress approach, Eq. (5.7) in Part I and the fundamental field equation (4.7) derived in the

next paragraph.
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Obviously, the solutions of Eqs. (3.11) and (3.13) are not independent, because they must fulfill the
original (lower order) equilibrium equations (3.5) and (3.6).

3.5. System of first-order differential equations
To classify the BVP, it can be useful to reduce Egs. (3.7) and (3.8) to a system of first order PDEs (in this

form, also the numerical solution of the problem is easier).
Using the trivial identity 2(1 — v) — (1 — 2v) = 1, these equations can be rewritten as

1 1
2(1 —v) [; (pu),, + w,z} o H=29)[u —w,, ], =2(1 — 2v)b00;, (3.15)
(1 =2v)[pw,, —pu: ], +2(1 = v)[pw,: +(pu),, |- = 0. (3.16)
By recognizing the similar terms enclosed in square brackets, the governing system of PDEs becomes
1
;(pu)w +w,, =: &), (3.17)
U, _Wap = w:p? (318)
/ 1 / 1
2(1 —v)ey,, +(1 — ZV)E(pww),z =2(1 - 2\))b00;7 (3.19)
1
_(1 _ZV);(pwip)m +2(1 - v)g/l/vz: 0, (320)

in which the symbol ¢, is used to emphasize its proximity to the volume strain &y, &, = ¢y — by @/p;
besides, cozﬁ = 20,.
The following matrix form highlights the mathematical structure of the problem:

Sl ) -5

R <lgv>/pHpgc,5;L+[z<1ov> _a_ozv)/pHpiZipLL(lzov)boo/p} 322

An elementary result must be now briefly recalled: the characteristics of a system of first order PDEs, in
the form Av,,+Bv,,= 0, are defined as the curves that are solution of the ODE dz/dp = k(p,z), where
k(p,z) is a root of the characteristic algebraic equation det(A + kB) = 0. In the case (3.21), this equation is
unexpectedly independent of p, being k> +1 = 0; for the second system (3.22), an identical algebraic
equation is obtained.

Consequently, both systems are uniformly elliptic in the cross-section domain.

3.6. Formally uncoupled partial differential equation

Notwithstanding Eqgs. (3.21) and (3.22) seem to be uncoupled, the BCs do not permit solving the
problem in cascade by substituting the solution of the second system into the first one.

For the same reason it is not too effective to reduce each system to a pair of formally uncoupled PDEs;
therefore, only the results are briefly summarized.

The auxiliary potential function ¢ is introduced to satisfy Eq. (3.20) as
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2(1=v)pey = ¢, (3.23)
(1 =2v)pw, =¢., (3.24)
while the previous equation (3.19) gives
1
P(;(f),p)ap +¢azz: 2(1 —2V)b00. (325)

As an alternative, the system (3.22) can be reduced, through simple algebraic manipulations, to the
following formally uncoupled (not independent) equations

1 ! !
;(pgl/’l’ ))P Ty sz = 0, (326)

1 / /
[; (pw(p)w:| P +w<p7zz =0, (3.27)

that is, 4°¢), = 0 and A", = 0, respectively.

4. Fourth-order governing system in

In this paragraph the coupled Egs. (3.7) and (3.8) in u and w are reduced to a single fourth order PDE,;
besides, a very interesting close connection with the stress formulation presented in Part I is achieved.

4.1. Displacement potential function ®

The third equilibrium equation (3.8) is transformed into
(1 =2v)pw,, +pu,.|,, +[2(1 = v)pw,. ],. = 0, (4.1)

to recognize a necessary existence condition of a potential function, 2(1 — v)®,,. (a form that is suggested by
the subsequent developments), such that

(I =2v)pw,, +pu,.=2(1 —v)(P,. ) .-, (4.2)

2(1 - V)pw7z = _2(1 - V)((D,ZZ )717 . (43)

It is opportune to briefly mention that, despite the similarity with the equations defining the stress
potential function s in Part I (cf. Egs. (4.29) and (4.30) later), the relationship between @ and  is by no
means immediate, because the left hand side of these equations are not related to 7,. and o, respectively.

The latest equation is directly integrated with respect to z, giving

pw=—0,,, (4.4)

where the resulting arbitrary function of p is embedded in @,.,, without loss of generality. Substituting for w
in the earlier equation, results in

1
_(1 - 2‘)) |:p<p¢7ﬂ ) » :| 2 TPU: = 2(1 - v)¢azzz . (45)
This equation can be quickly integrated, giving

1
pu=(1- 2v)p<;(15,,, ) w21 =—v)®,.=(1-2v)ADP+ D, .., (4.6)
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in which the rising arbitrary function of p is included in @ (without affecting its derivatives with respect to z,
of course).

The remaining equilibrium equation is not yet satisfied. By substituting the stress components as a
function of the displacement components ¥ and w in Eq. (3.7), after a rather cumbersome algebra not
reported here, the field equation is finally obtained in the following compact form

AN = boo/(l — V), Vx € /. (47)

The field operator A := p9,(1/p)d, + 0. is that appearing in the stress approach presented in Part I.
In conclusion, owing to the identities (proofs are omitted)

A A (@) = — % (AAD),,. , (4.8)

QQu(®) = (1 —2v) {%(AA(D),/,] »+2(1 — V)%(AA¢),ZZ, (4.9)

it is straightforward to verify that the displacements (4.4) and (4.6) actually satisfy Eqs. (3.11), QQu = 0,
and (3.13), A" A*w = 0, respectively.

4.2. Boundary conditions

The stress components (3.1)—(3.4) can be written in term of @, using the expression (4.6) and (4.4), as

1+v v 1 1 1
O'pT:mboo‘f'(l —V)(;A(D)7p+<5(p>7pzz+\)?/l¢, (410)
14+v v 1 1
(5 E :Eboo-i-v;(/lfp),p—;(p,pzz, (411)
l+v 1 ( 1 > 1 1
Tps =1-v—-(A4DP),.—| -D,, ),p.=—v—(AD),.+—-D,.... 4.12
e = (1) (A0 (0 )= v (49). (4.12)
The static BCs (n being the outward normal to 0.¢/) are
o,ny+ T, =0, (4.13)
Ty + 0.0, = 0. (4.14)
The second one, using ¢, = n, and f, = —n, (¢ being the tangent unit vector to 0.2/) and rearranging the
result, writes as
1 1 v
; [—V(A(I)),Z +(pvzzz ]tz + ; [_V(A(p)w +(p7p22 ]tﬂ = Eboo tp' (4'15)

This relationship, integrated along each closed curve ¢; belonging to the boundary 0.o7, gives

D, —vAD = bop® +x;, VX E ¢ C 0oL, (4.16)

2(1=2v)

k;,i = 1...N, being constants to be determined.
Using the first expression for 7,., Eq. (4.13) can be written as

1 1 v 1
(1 — V)<;A‘D> ,;1+(;¢7pz>7[+|:mboo _;<dj7zz - VA‘D) n, = 0, (417)
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that, with Eq. (4.16), leads to the final form of the BC

1 1 1 v
(IV)(;AQS)m‘F(;@,pz),; (?K,‘mboo)tz, VXEc;C@&i, (418)

where (), denotes the derivative along the boundary.

Remarks. (1) Egs. (4.16) and (4.18) constitute a pair of unstable BCs.
(2) Both are degenerate but the second one is in a simpler form; therefore, the structure of this BVP is not
too different from that found in Part L.

(3) The uniformity conditions, f d;®,.. = 0 for each curve ¢; constituting the boundary 0.7, are neces-
sarily fulfilled by the implicit assumption that @ is regular enough, together with its required derivatives.
(4) The special solution @y := ap’z is a rigid body translation along Z, not aflecting the constants ;.

(5) Note that the substitution @ « @ + x; (z>/2(1 — v)) cancels k; in Eq. (4.16); nonetheless it affects the
u displacement (4.6) and Eq. (4.18). Consequently, x; = 0 cannot be assumed, in general.

4.3. Discrete compatibility conditions

In conclusion, the conditions determining the unknown constants k; are discussed. By integrating the
relationship (4.18) along the closed curve ¢ C 0.7, results in

1 1 1 v
(1 — V)é (;A‘D) s dl—‘rf[‘ d,(;‘p,pz) —é (K,‘F—mb()o)tzdl. (419)

Now, consider that:

(i) Eq. (4.4) states that (1/p) ®,,. = —w; then the second integral is nil by the continuity of the longitu-
dinal displacement;

(i1) since ¢, dl = d,z then f t.dl = 0; thus the constant by, disappears in the relationships (4.19);

(i) o, = f (1/p*) t.dl; by denotlng with Int(¢;) the portion of the surface of the plane delimited by the
closed curve ¢ (cf. Fig. 4 in Part 1), these geometrical parameters can be also computed as follows:

1 1 1
O, = j{ —n,dl = 7{ —n,dl = —2/ — da <0, (4.20)
¢ COA p c1=0Int(cy) p Int(cy) p-
1 1 1
Oe; = npdl = — —2npdl = +2 3 da > O, (421)
¢;COf ,0 ¢;=0Int(c;) 1Y Int(c;) P

for the outermost boundary ¢; and the inner curves ¢;, respectively (n is the outward normal to the con-
sidered domain).
By collecting these results, the anticipated conditions on the unknown constants k; can be written as

(1v)j{<1/1q§>,ndz%x,-, VeCood, i=1...N. (4.22)
i p

that, owing to the first remark, assumes the meaning of discrete compatibility conditions.
In order to show that these equations are not independent, it is useful to rewrite them in the following
equivalent form

(1-— v)jf %(A@),n dl/ + ! —vzv o,k = 0. (4.23)
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In fact, consider that v(1/p)(A®),, = n,(—v(1/p*)A®) + v(1/p)(AD),,. Substituting Eq. (4.16) in the first
term at the right hand side and integrating along ¢; results in

1 1 v 1 1
“ AP = ¢ [ —A0 S — i -
o (o)== f (o Jovats gty fmat s f Smare |5
X (A®),, dI
=Ko, + v}{ é(/l@),ﬂ d/, (4.24)

since the first two integral are zero. Multiplying this result by (1 — v)/v and subtracting Eq. (4.22), the
relationship (4.23) is proved.

Theorem. The discrete boundary conditions are non independent, since constants i; satisfy the equation

N
(1= 20)> ritte, + vhoo ?{ %da =0. (4.25)

i=1

Proof. The field equation (4.7), divided by p and integrated in the ./ domain, gives

1 1 boo 1
—(AD),, |,, + (—A(P,Z),z }da = / —da, 4.26
/~/{[P( )p}p p l—v/,p ( )

or
1 1

(1 —v)/ —(AD),, dl—boo/ —da=0. (4.27)

o/ P o P

On the other hand, the sum of the N relationship (4.23) is

1 -2
1—v / —(AD n dl/ + Oe; Ki = 0. 4.28
(1—v) > p( ) . ; (4.28)

By comparing the last two results, Eq. (4.25) is obtained. O

The comparison with the torsion problem for straight beams, the shear—torsion problem (Mentrasti,
1996) or the stress formulation of the problem in question (discrete compatibility conditions in Section 5 of
Part I) for a curved beam is expressive: in those cases one condition is simply a linear combination of the
remaining ones (cf. also Remark 5 on x,, above).

4.4. Link to the stress potential function y

A connection of the present formulation with the study presented in Part I is possible by interpreting the
third equilibrium equation (3.6) as a condition for the existence of a stress potential such that

1
o.=——,,, 4.29
SV (4.29)

1
Tpe = ;xp,z . (4.30)

Furthermore, it has been identified with the stress potential function \ defined in Section 2 of Part I and
for this reason it is assumed to be known in the following.
Consequently, from Egs. (3.3) and (3.4)
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E 1 1
(= Vwe = (pu)yy + Vb0 | = — =, 431
0 (1+V)(1—2V) ( V)W? +VP(pu)p+v 00 plpp ( )
E 1
sz.m(w,p +M,z) = ;lp,z (432)

hold true (see also Egs. (2:3), (2:7) and (2:8) of Part I).

From these relationships, it is easy to derive two uncoupled PDEs in u and w, by eliminating the
common mixed derivatives. However, since the equations so obtained cannot be independent, of course, a
more efficient strategy is to rewrite the second equation as

w,, + <u - 2(1%) ;np) =0, (4.33)

in such a way that it can be regarded as a necessary condition for the existence of a new potential function
F, solving Eq. (4.33) as

(I+v)1
z ;xp, (4.34)

u=—F,,+2

w=F,_. (4.35)
Substituting these expressions in the remaining Eq. (4.31), the field equation in F is obtained

(1+v)

1
pF — l—VFzz:
( 7ﬂ)7/) ( ) . E

v_
P

1

—,p +vboo. (4.36)
P

It is very interesting to note that:

1. Eq. (4.36) is hyperbolic: its characteristics are the straight lines z = +kp, with ¥*> := (1 — v)/v. The occur-
rence of such a class of PDEs is very unusual in dealing with szatic linear elastic problems!

2. There are no boundary or initial conditions associated to this equation: in fact all the equilibrium BCs are
already fulfilled by the s function by hypothesis; on the other hand, no additional physical requirements
can be imposed.

3. The only meaningful solution for this hyperbolic equation is a particular solution: in Appendix B a sim-
ple procedure is presented to obtain such a result, irrespective of the cross section geometry.

The alternative expressions (4.11), (4.12) and (4.29), (4.30) for the stress o, and 7,, permit determining
the relationship between the functions iy and @ as follows:

(I+v)
E

Y=—vAD+ D, — boop® — K, (4.37)

v
2(1 —2v)
where k, is a constant. Furthermore,

1
PR U ) T R (4.38)
E
can be drawn from the BCs (4.16).
When W? = 0 1s assumed, then x, can be identified as «;.
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5. Force resultants

Since the bending problem for the curved beam is solved exactly, the computation of force resultants N,
V,, V. and M, is not essentially different from what was presented in Part I using the stress method: here it
is enough to directly consider t,. without resorting to the potential stress function y (together, of course, with
the relevant BC).

For M, the same method is not available so that it can be useful to derive it by invoking only the
equilibrium condition (i.e. without making use of any explicit solution).

5.1. Moment component along the p-axis

With the expression of o, derived from the equilibrium equation (3.5), the moment M, can be also
written as

M, ::[/Zaq,da:/ Z[(po,),p +pr,,z,z]da:/[(pZ(f,,),,)Jr(er,,z),z —p1,:) da
K> o

o

= / Zplo,n, + t,.n.]dl — / pt,.da = —/ pt,,da =0, (5.1)
st o o

where the BC (4.13) is used to cancel the integral along the boundary, while the last equality is proved in
what follows.
Consider the BC (4.14) multiplied by p* and integrated on 0.¢/:

0= / Pty + pron]dl = / (071,0).y +(p62).c ] da, (5.2)
0./ o

from the equilibrium equation (3.6), ¢.,.= —(1/p)(p7,.),, results, so that the above relationship finally
gives

1
|6 =2t | da= [ prda=o (53)
ot P ol

6. Attempt for a variational formulation

The advantage of a variational formulation for a linear differential problem lies first in a relative easy
proof of the existence of the solution and, secondly, in the possibility of an (almost standard) finite element
approach to searching for the solution itself.

In this section an attempt is made to solve the so-called inverse problem of the calculus of variation, i.e.
finding f[H] and g[H] such that, from stationary conditions for the functional

/f(HaH7i7H7ij)da+/ g(HvHataHvtt)dl7 (61)
K- 0o/

both the field equation and the boundary conditions of the problem can be derived.

Even though a positive answer to this question cannot be found, it is very interesting to present the
results attained because they enlighten the mathematical structure of the differential system governing the
bending curved beams.
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6.1. Functional associated to the field equation

Reference will be made to a field equation of the form
AAv =c¢ (6.2)

appearing here and in Part 1.

Since the higher order derivatives involved in A4 are [p((1/p)H,, ),y ],pp and H,.... a functional giving
such terms can be assumed to be proportional to a (non-homogeneous) quadratic form of p((1/p)H,, ).,
and H,.., modulo a multiplicative function of p:

F1H] = ;Mp){ ([ )] ) + i 2L, )t } ~ oot (©3)

where A(p), y(p) and the constant p have to be determined.
Leaving aside a detailed proof, involving only elementary mathematics, the result obtained is:

Lemma 1. When /(p) = x(p) := 1/p and p := 1 the Euler equation
f7H _(f7H‘,7 )ap _(f»H‘; );z +(f‘;H‘pp )app +(f7H‘p_7 )apz +(f71~1,zz )722 = 07 (64)
coincides with the required field equation, divided by p.

6.2. Variational conditions at the boundary

The first BC is

(Ui, = Fann)y = Fan, ) I+ ot = P e = e Do It = (6 s mi)a SH =0, (6.5)

in which, for the sake of brevity, the tangent unit vector ¢ at the boundary is supposed to be continuous
(sum on repeated indexes i, = 1...2 in the last addend).
The second can be written as

(nifﬂva’.g/- nj)SHm = 07 (66)
where H,, is the derivative of H along the normal.
It is not difficult to understand that none of the unstable and degenerate BCs involved in the bending
problem can be by no means derived from the chosen f (or any g).

The conclusion is: the bending problem (irrespective of the stress or bending approach) is a non-varia-
tional problem, due to the occurrence of degenerate unstable BCs.

6.3. Adjoint operators

Some simple integral identities will be derived in this section to show the relationships between the
differential operators appearing in the different formulations presented above.

Lemma 2. Let u and v be two sufficiently regular functions defined in </, with regular boundary. Then the
following identities hold true:

/u/lvda:/ vA*uda+/ {uv,n—vl(pu),n}dl, (6.7)
o oS ot P
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1 1 1
/u—/lvda:/ v—Auda—i—/ —[uv,, —vu,,]dl, (6.8)
o P o P ot P

1
/ uQuda = / vAuda +/ [u—(pv),,, - vu,n} dl. (6.9)
o o o L P

Thus, the algebraic adjoint of the operator A := pd,(1/p)0, + 0.. is both A" := (1/p)0,pd, + O.. (see Eq.
(3.13)) and Q :=0,(1/p)0,p + 0.. (see Eq. (3.11)). Vice versa (1/pA) is formally self-adjoint.
Finally, comparing the last two identities results in

/udea:/ vA*uda, (6.10)
2 o/

independently of the boundary conditions.

7. Conclusion

The circular curved beam, under uniform bending in its plane, is investigated by a displacement method.
The 3D problem is solved exactly: the cross-section remains plane and rotates about the Z-axis, while each
longitudinal fiber remains circular.

The obtained field displacement, (2.40)—(2.42), being independent of any assumption regarding the
material, permits extending the subsequent analysis to anisotropic composite curved beams whose me-
chanical properties are invariant with respect to the symmetry group %; of the rotations about the Z-
axis.

The equilibrium equation (in several form) and the BCs for the homogenecous linear elastic body are
derived: they constitute an unstable degenerate BVP with a structure similar to that found in Part I.

The major difficulty, namely the degenerate character of the BVP, is an inherent quality of the problem,
in both displacement and stress formulations.

The non-variational nature of this kind of problem is also detected.

7.1. Future developments

Bending of curved beams, even in the simple homogeneous and elastic case, turns out to be an unex-
pectedly formidable problem: a variable coefficient, fourth order, elliptic, partial differential field equation
with two unstable degenerate BCs.

Since the physical problem seems to be regular (also with regard to the very simple behavior of the
straight beams under bending) several inquiries could be carried out:

e scarch for alternative formulations leading to well posed BVPs (integral transform, boundary integro-dif-
ferential equation);

e determine the conditions for the existence of the solution; because this kind of BVP is not Fredholm
type, precise the general form of the BCs so that they are compatible;

e detect in which cases the discontinuity of the normal at the boundary induces stress concentration (in ho-
mogeneous or composite materials);

e carry out a special theory for thin-walled, highly connected, beams.
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Appendix A. Functional form of the {\it v} component
The basic tools for deriving an expression for v(p, ¢,z) is the following elementary lemma: the general
solution of a PDE of the form
O(Z; 1) 52 =0 (A1)
is
(4, 1) = ﬂ“ég)(/l) + U%,l)(/l) + v (1), (A2)

in which, for the sake of conciseness, indexes enclosed in angle brackets (...) are used both to denominate
the function and to explicitly show the independent variables.
Then, Eq. (2.6), v,,.. = 0, gives

U= Ug) (0, @) + Vi) (0, Z) + vipr) (p, Z). (A.3)
Substituting this expression for v in Egs. (2.1), (2.3), (2.10), the following relationships must hold

U(q)z)a(/)zz = 07 (A4)

Ulpg)ppo = 0, (A.5)

Upe)sppp = 0. (A.6)
The first equation gives

Vi) = Zao,(9) + ai(e) + ax(Z), (A7)
the second one gives

Uipg) = Pbo(@) + bi(@) + ba(p). (A8)

The third condition specifies that by ,,(¢) = 0, from which by(¢) := boo ¢ + bo1, so that v, can be
written

Vipg) = boop@ + b1(@) + ba2(¢), (A.9)

the by, p term being enclosed in by(p) — ba(p) + bo1p-
The final form of the v displacement is

U(pv ®, EZ) = bOOp(P + bZ(p) + b3((p) + g7a0,w((/7) + aZ(g) + v(pz)(pa g)? (AIO)

in which b;(¢@) := a1(@) + b1(p) and the (arbitrary) function ao(¢) appears under the derivative sign to
simplify the form of the ensuing Eq. (2.24).

Appendix B. Solution of the hyperbolic partial differential equation (4.36)

The displacement components u and w are obtained, in Eqgs. (4.34) and (4.35), as simple functions of
both the potential stress function iy and the new function F;, pF must be a solution of Eq. (4.36) or,
equivalently,

v
—(pF —pF .= . B.1
(1+V)(p ap)m pr, 1 (B.1)

Integration along the characteristics is not more effective than a direct attack of the equation by a
numerical method.
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Fig. Al. Finite difference scheme for Eq. (4.36).

Since no initial or boundary conditions must be considered, a finite difference approach is very simple to
implement, irrespective of the geometry of the multi-connected cross-section:

1. Let ¢ be prolonged with continuity through 0.« by defining y = w? within each simply connected region
of &?/.</ bordered by the curve ¢; c 0./ (x//? on the outer region up to infinity).

2. Arbitrary (continuous) values F(p, %) and F(p,, Z0) are assigned on two orthogonal lines & = z, and
p = p,, respectively, with the only constraint that Eq. (4.36) be satisfied at the point (p,, Z9); e.g.
F(p,Zy) =0 and

i
1=y 2) =5 [ (- 2 (00 DAL+ 3 VBl — 24 (B.2)

3. Finally, F is computed on a {3p, 8%} grid by writing the 3 x 3 discrete finite difference operator, asso-
ciated to Eq. (B.1), at each point located near (p,, &) and then by proceeding, layer by layer (see. Fig.
1), until all points belonging to the cross-section are exhausted.
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